简便计算有哪几种?

作者:佚名    更新日期:2025-06-12

1、乘法分配律

简便计算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意实数。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆运用(也叫提取公约数),尤其是a与b互为补数时,这种方法更有用。

也有时用到了加法结合律,比如a+b+c,b和c互为补数,就可以把b和c结合起来,再与a相乘。如将上式中的+变为x,运用乘法结合律也可简便计算

2、乘法结合律

乘法结合律也是做简便运算的一种方法,用字母表示为(a×b)×c=a×(b×c),它的定义(方法)是:三个数相乘,先把前两个数相乘,再和第三个数相乘;或先把后两个数相乘,再和第一个数相乘,积不变。

它可以改变乘法运算当中的运算顺序,在日常生活中乘法结合律运用的不是很多,主要是在一些较复杂的运算中起到简便的作用。

3、乘法交换律

乘法交换律用于调换各个数的位置:a×b=b×a。

4、加法交换律

加法交换律用于调换各个数的位置:a+b=b+a。

5、加法结合律

(a+b)+c=a+(b+c)。

简便计算是一种特殊的计算,它运用了运算定律与数字的基本性质,从而使计算简便,使一个很复杂的式子变得很容易计算出得数。

扩展资料:

性质

减法1

a-b-c=a-(b+c)

减法2

a-b-c=a-c-b

除法1

a÷b÷c=a÷(b×c)

除法2

a÷b÷c=a÷c÷b

注意事项:

在进行简便运算(四则运算)时,应注意运算符号(乘除和加减)和大、中、小括号之间的关连。不要越级运算,以免发生运算错误。



1.加法交换律.a+b=b+a
2.加法结合律.a+b+c=a+(b+c)
3.乘法交换律.ab=ba
4.乘法结合律.abc=a(bc)
5.乘法分配律.a(b+c)=ab+ac
6.连减变减去和,减去和变连减.a-b-c=a-(b+c)
7.一级运算去括号法则:(1)括号前是加号,去括号后不变号;a+(b-c)=a+b-c
(2)括号前是减号,去括号后括号里的同级符号变成
它的相反符号.a-(b-c)=a-b+c
8.除以一个非零的数等于乘以它的倒数.
9.乘除混合变连乘.
10.常用乘法凑整:25×4=100,125×8=1000.

第一种是,乘法交换律。第二种是三个数相乘,先把前两个数相乘,再乘第三个数减下把后。一已知两个因数就他人。就他们的基友们发计算。结合律。

第一种是,乘法交换律。第二种是三个数相乘,先把前两个数相乘,再乘第三个数减下把后。一已知两个因数就他人。就他们的基友们发计算。结合律

加法结合律,加法分配律;乘法结合律,乘法分配律,乘法交换律

数学简便计算,有哪几种方法?~

主要有六大方法:
“凑整巧算”——运用加法的交换律、结合律进行计算。
运用乘法的交换律、结合律进行简算。
运用减法的性质进行简算,同时注意逆进行。
运用除法的性质进行简算 (除以一个数,先化为乘以一个数的倒数,再分配)。
运用乘法分配律进行简算。
混合运算(根据混合运算的法则)。
具体解释:
一、“凑整巧算”——运用加法的交换律、结合律进行计算。
凑整,特别是“凑十”、“凑百”、“凑千”等,是加减法速算的重要方法。
加法交换律
定义:两个数交换位置和不变,
公式:A+B =B+A,
例如:6+18+4=6+4+18
加法结合律
定义:先把前两个数相加,或者先把后两个数相加,和不变。
公式:(A+B)+C=A+(B+C),
例如:(6+18)+2=6+(18+2)
引申——凑整
例如:1.999+19.99+199.9+1999
=2+20+200+2000-0.001-0.01-0.1-1
=2222-1.111
=2220.889
二、运用乘法的交换律、结合律进行简算。
乘法交换律
定义:两个因数交换位置,积不变.
公式:A×B=B×A
例如:125×12×8=125×8×12
乘法结合律
定义:先乘前两个因数,或者先乘后两个因数,积不变。
公式:A×B×C=A×(B×C),
例如:30×25×4=30×(25×4)
三、运用减法的性质进行简算,同时注意逆进行。
减法 定义:一个数连续减去两个数,可以先把后两个数相加,再相减。 公式:A-B-C=A-(B+C),【注意:A-(B+C)= A-B-C的运用】例如:20-8-2=20-(8+2)

四、运用除法的性质进行简算 (除以一个数,先化为乘以一个数的倒数,再分配)。
除法 定义:一个数连续除去两个数 ,可以先把后两个数相乘,再相除。公式:A÷B÷C=A÷(B×C),例如:20÷8÷1.25=20÷(8×1.25)
定义:除数除以被除数,把被除数拆为两个数字连除(这两个数的积一定是这个被除数)例如:64 ÷16=64÷8÷2=8÷2=4
五、运用乘法分配律进行简算。
乘法分配律 定义:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。 公式:(A+B)×C=A×C+B×C 例如;2.5×(100+0.4)= 2.5×100+2.5×0.4= 250+1= 251
六、混合运算(根据混合运算的法则)。
学会数字搭配( 0.5和2、0.25和4、0.125和8)。

数学简便计算方法:
一、运用乘法分配律简便计算
简便计算中最常用的方法是乘法分配律。乘法分配律指的是:
ax(b+c)=axb+axc
cx(a-b)=axc-bxc

例1:38X101,我们要怎么拆呢?看谁更加的靠近整百或者整十,当然是101更好些,那我们就把101拆成100+1即可。
38X101
=38X(100+1)
=38X100+38X1
=3800+38
=3838

例2:47X98,这样该怎么拆呢?要拆98,使它更接近100。
47X98
=47X(100-2)
=47X100-47X2
=4700-94
=4606
二、基准数法
在一系列数中找出一个比较折中的数来代表全部的数,要记得这个数的选取不能偏离这一系列数。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法结合律法
对加法结合律(a+b)+c=a+(b+c)的运用,通过改变加数的位置来获得更简便的运算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、拆分法
顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改变数的大小哦!
例:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
=1000
五、提取公因式法
这个方法实际上是运用了乘法分配律,将相同因数提取出来。
例:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
=9.2